UNIVERSITY OF SOUTHAMPTON

SEMESTER 2 EXAMINATION 2022 - 2023

ADVANCED WIRELESS COMMUNICATIONS NETWORKS AND SYSTEMS

DURATION 150 MINS (2.5 Hours)

This paper contains 4 questions

Answer All the Four questions.

An outline marking scheme is shown in brackets to the right of each question.

This examination contributes 100% of the marks for the module.

Only University approved calculators MAY be used.

A foreign language dictionary is permitted ONLY IF it is a paper version of a direct Word to Word translation dictionary AND it contains no notes, additions or annotations.

8 page examination paper.

Copyright 2023 © University of Southampton

Question 1.

(a) The power delay profile of a mobile channel is given in Figure Q1.1. The system's carrier frequency is $f_c = 3 \text{ GHz}$, the transmitted signal bandwidth is $B_S = 2 \text{ MHz}$, the symbol period of the system is $T_S = 0.5 \,\mu\text{s}$, and the propagation speed is $c = 3 \times 10^8 \,\text{ms}^{-1}$.

The root mean square delay spread is defined as $\sigma_{\tau} = \sqrt{\overline{\tau^2}} - (\overline{\tau})^2$, where $\overline{\tau}$ and $\overline{\tau^2}$ are the first and second moments of the channel's power delay profile, respectively, and the 50% coherence bandwidth is defined by $B_C = \frac{1}{5\sigma_{\tau}}$.

- (i) Calculate the 50% coherence bandwidth of the channel, and decide whether an equaliser is required for this mobile communication system.
- (ii) You are making a mobile call at a high-speed train travelling at a speed of 360 km/hr. Estimate the Doppler spread of the corresponding channel, and calculate the normalised Doppler frequency of this fading channel.

[8 marks]

(b) The received signal power P_{Rx} at receiver is related to the transmitted signal power P_{Tx} at transmitter by the following equation

$$P_{Rx} = P_{Tx} \cdot h \cdot r^{-\alpha}$$

Copyright 2023 © University of Southampton

where h is the small-fading channel gain which is assumed to be a constant for all links, r is the distance from the transmitter to the receiver, and α is the pathloss exponent which is given by $\alpha = 2$.

Figure Q1.2

The spatial locations of source S, destination D, and potential relay R are illustrated in Figure Q1.2. For the receiver to successfully detect the transmitted signal, the received signal power should be no less than the threshold P_{th} , i.e., $P_{Rx} \ge P_{th}$.

- (i) Assume that $\theta = 60^{\circ}$. In order to minimise the total required transmit power, should source *S* directly transmit to destination *D*? or should *S* transmit to relay *R* and let *R* forward the signal to *D*? and why? (hint: $\cos 60^{\circ} = \frac{1}{2}$.)
- (ii) If $\theta = 30^{\circ}$, repeat question (i) above. In this case, also calculate the ratio of the total required transmit power for $S \to D$ link to the total required transmit power for $S \to R \to D$ link. (hint: $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$.)

[9 marks]

(c) As an engineer in charge of designing a 4G mobile network, you decide to choose orthogonal frequency division multiplexing (OFDM). Explain the purposes of the cyclic prefix at the beginning of each OFDM block or symbol.

[8 marks]

TURN OVER

Question 2.

- (a) (i) Draw the block diagram of a baseband communication system and define the requirements of optimal transmitter and receiver filtering.
 - (ii) With a clearly labeled block diagram, explain the operation of the time-two carrier recovery scheme.

What carrier modulation communication system is this carrier recovery scheme suitable for?

(iii) You are designing a quadrature amplitude modulation (QAM) based carrier communication system. Can you apply the time-two carrier recovery scheme for carrier recovery? Explain why.

Draw the block diagram of the carrier recovery scheme that can be used for QAM transmission, and briefly explain its operation.

[12 marks]

- (b) (i) Explain the three main parameters for designing a symbol constellation, using the square 16-quadrature amplitude modulation (16-QAM), star 16-QAM and 16-phase shift keying (16-PSK) as illustrations.
 - (ii) A fading communication channel has a passband bandwidth $B_p = 220 \text{ MHz}$. The combined transfer function of the transmit and receive filters has a raised-cosine characteristic with a roll-off factor of 0.1. Design an appropriate modulation scheme so that you can transmit at the bit rate of $R_b = 800 \text{ Mbits/s}$ over this fading channel reliably.

[7 marks]

(c) With an appropriate diagram, describe the 4-step handshake multiple access procedure for user device to access the fourth-generation (4G) network.

[6 marks]

Question 3.

(a) Consider the *M*-ary communication scheme with the constellation set

$$\mathcal{X} = \{\bar{x}_1, \bar{x}_2, \cdots, \bar{x}_M\},\$$

where $M = 2^n$. At the transmitter, the constellation mapper maps every block of *n* bits into a symbol:

$$\{b_0, b_1, \cdots, b_{n-1}\} \to x \in \mathcal{X}.$$

At the receiver the detector outputs the received signal sample

$$y = g_0 x + \varepsilon$$

where g_0 is the known channel state information, and ε is the channel additive white Gaussian noise with power N_0 .

- (i) Express the log likelihood ratio (LLR) of the *i*th bit b_i using the optimal log-MAP demapper.
- (ii) Calculate the LLR of the *i*th bit b_i according to the near optimal Max-log-MAP demapper.
- (iii) If the *a priori* LLRs of b_i for $0 \le i \le n-1$ are given, how can you calculate the *a posteriori* LLRs of b_i ?
- (iv) The LLRs derived in (ii) are in fact the *a posteriori* LLRs under what assumption?
- (v) Discuss the reason for calculating the LLRs of bits rather than using the hard detected bits.

[8 marks]

(b) With the aid of clearly labeled block diagrams for two-stage turbo transmitter and receiver, briefly explain how iterative turbo detection and decoding operates.

[11 marks] TURN OVER

Copyright 2023 © University of Southampton

Page 5 of 8

(c) With appropriate schematic diagrams, divide various transmit beamforming schemes into the three classes according to their hardware requirements and functions.

[6 marks]

Question 4.

(a) In an MU-MIMO-OFDM system, K single-antenna users share the same N-subcarrier resources and communicate over frequency selective channels to the base station (BS), which is equipped with L receive antennas. At the BS, after cyclic prefix removal and N-point FFT processing, the frequency-domain (FD) receive signal vector $\underline{\mathbf{X}}_n \in \mathbb{C}^{L \times 1}$ on subcarrier n can be expressed as

$$\underline{\mathbf{X}}_n = \underline{\mathbf{H}}_n \, \underline{\mathbf{S}}_n + \underline{\underline{\mathbf{\Xi}}}_n, \ 0 \le n \le N - 1$$

where $\underline{\mathbf{H}}_n \in \mathbb{C}^{L \times K}$ is the FD channel matrix on subcarrier n,

$$\underline{\mathbf{S}}_{n} = \left[S_{1,n} \ S_{2,n} \cdots S_{K,n}\right]^{\mathrm{T}} \in \mathbb{C}^{K \times 1}$$

is the transmitted symbol vector of the K users on subcarrier n with $E[|S_{k,n}|^2] = \sigma_s^2$ for $1 \le k \le K$, and the transmitted data symbols take the values from the M-ary constellation set

$$S_{k,n} \in \mathcal{S} = \left\{ \underline{S}^{(1)}, \underline{S}^{(2)}, \cdots, \underline{S}^{(M)} \right\},\$$

while $\underline{\Xi} = [\Xi_{1,n} \ \Xi_{2,n} \cdots \Xi_{L,n}]^{\mathrm{T}} \in \mathbb{C}^{L \times 1}$ is the FD Gaussian white noise vector on subcarrier n with $E\left[|\Xi_{l,n}|^2\right] = 2\sigma_{\xi}^2$ for $1 \le l \le L$.

Hence, given $\underline{\mathbf{H}}_n$, the multiuser detection (MUD) can be done on per subcarrier basis.

- (i) Derive the maximum likelihood MUD solution of the transmitted symbol vector of the K users \underline{S}_n for $0 \le n \le N 1$.
- (ii) Derive the linear minimum mean square error (MMSE) MUD solution of the transmitted symbol vector of the *K* users \underline{S}_n for $0 \le n \le N-1$.
- (iii) Derive the linear zero-forcing (ZF) MUD solution of the transmitted symbol vector of the *K* users \underline{S}_n for $0 \le n \le N 1$.

[7 marks] TURN OVER (b) With the aid of a clearly labeled block diagram and well-defined equations, briefly describe the operations of the spatial modulation transmitter and receiver.

[8 marks]

- (c) In traditional networks with distributed access, such as ad hoc networks, there are no central access points.
 - (i) Briefly explain how information can be transmitted from source to destination in traditional ad hoc networks.
 - (ii) What does the communication strategy you outlined in (i) above rely on?
 - (iii) In emerging networks known as delay tolerance networks, can the communication strategy you outlined in (i) above still be applied? and why?
 - (iv) Explain briefly the new communication strategy or paradigm for delay tolerance networks.

[10 marks]

END OF PAPER